Background and objectives: Cystic fibrosis (CF) is known for its impact on the lung and pancreas of individuals; however, impaired growth is also a common complication. We hypothesized that targeting the biological defect in the CF transmembrane conductance regulator (CFTR) protein may affect growth outcomes.
Methods: In this post hoc analysis, we assessed linear growth and weight in 83 children (aged 6-11 years) enrolled in 2 clinical trials, the longitudinal-observation GOAL study and the placebo-controlled ENVISION study, to evaluate the effects of ivacaftor, a CFTR potentiator. We calculated height and weight z scores and height and weight growth velocities (GVs).
Results: In ivacaftor-treated children in GOAL, height and weight z scores increased significantly from baseline to 6 months (increases of 0.1 [P < .05] and 0.26 [P < .0001], respectively); height GV increased significantly from 3 to 6 months (2.10-cm/year increase; P < .01). In ivacaftor-treated children in ENVISION, height and weight z scores increased significantly from baseline to 48 weeks (increases of 0.17 [P < .001] and 0.35 [P < .001], respectively). Height and weight GVs from baseline to 48 weeks were also significantly higher with ivacaftor than with placebo (differences of 1.08 cm/year [P < .05] and 3.11 kg/year [P < .001], respectively).
Conclusions: Ivacaftor treatment in prepubescent children may help to address short stature and altered GV in children with CF; results from these analyses support the existence of an intrinsic defect in the growth of children with CF that may be ameliorated by CFTR modulation.
Copyright © 2017 by the American Academy of Pediatrics.