Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting (Emberiza jankowskii)

PeerJ. 2017 Jan 25:5:e2917. doi: 10.7717/peerj.2917. eCollection 2017.

Abstract

Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0.1667. Overall, compared to other passerine birds, a relatively low level of MHC polymorphism was revealed in E. jankowskii, which was similar to that in E. cioides. Positive selection was detected by PAML/SLAC/FEL analyses in the region encoding the peptide-binding region in both species, and no recombination was detected. Phylogenetic analysis showed that the alleles from E. jankowskii and E. cioides belong to the same clade and the two species shared similar alleles, suggesting the occurrence of a trans-species polymorphism between the two Emberiza species.

Keywords: Emberiza cioides; Emberiza jankowskii; MHC; Positive selection; Trans-species polymorphism.

Grants and funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31172109) and the Jilin Provincial Science and Technology Plan of China (No. 20150101067JC). The funders played roles in study design, data collection and analysis, decision to publish, and preparation of the manuscript.