Three-Dimensional Rebar Graphene

ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7376-7384. doi: 10.1021/acsami.6b12503. Epub 2017 Feb 15.

Abstract

Free-standing robust three-dimensional (3D) rebar graphene foams (GFs) were developed by a powder metallurgy template method with multiwalled carbon nanotubes (MWCNTs) as a reinforcing bar, sintered Ni skeletons as a template and catalyst, and sucrose as a solid carbon source. As a reinforcement and bridge between different graphene sheets and carbon shells, MWCNTs improved the thermostability, storage modulus (290.1 kPa) and conductivity (21.82 S cm-1) of 3D GF resulting in a high porosity and structurally stable 3D rebar GF. The 3D rebar GF can support >3150× the foam's weight with no irreversible height change, and shows only a ∼25% irreversible height change after loading >8500× the foam's weight. The 3D rebar GF also shows stable performance as a highly porous electrode in lithium ion capacitors (LICs) with an energy density of 32 Wh kg-1. After 500 cycles of testing at a high current density of 6.50 mA cm-2, the LIC shows 78% energy density retention. These properties indicate promising applications with 3D rebar GFs in devices requiring stable mechanical and electrochemical properties.

Keywords: dynamic mechanical analysis; lithium ion capacitor; powder metallurgy; rebar graphene; three-dimensional.