High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts

ChemSusChem. 2017 May 9;10(9):1943-1957. doi: 10.1002/cssc.201601817. Epub 2017 Mar 30.

Abstract

The synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution reaction (OER) remains a major challenge for acidic water splitting on an industrial scale. To address this challenge, we obtained an outstanding high-performance OER catalyst by loading Ir on conductive antimony-doped tin oxide (ATO)-nanoparticles by a microwave (MW)-assisted hydrothermal route. The obtained Ir phase was identified by using XRD as amorphous (XRD-amorphous), highly hydrated IrIII/IV oxohydroxide. To identify chemical and structural features responsible for the high activity and exceptional stability under acidic OER conditions with loadings as low as 20 μgIr cm-2 , we used stepwise thermal treatment to gradually alter the XRD-amorphous Ir phase by dehydroxylation and crystallization of IrO2 . This resulted in dramatic depletion of OER performance, indicating that the outstanding electrocatalytic properties of the MW-produced IrIII/IV oxohydroxide are prominently linked to the nature of the produced Ir phase. This finding is in contrast with the often reported stable but poor OER performance of crystalline IrO2 -based compounds produced through more classical calcination routes. Our investigation demonstrates the immense potential of Ir oxohydroxide-based OER electrocatalysts for stable high-current water electrolysis under acidic conditions.

Keywords: electrocatalysis; energy storage; iridium; oxygen evolution reaction; water splitting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Crystallization
  • Electrochemistry / methods*
  • Electrolysis
  • Iridium / chemistry*
  • Oxidation-Reduction
  • Oxygen
  • Water / chemistry*

Substances

  • Water
  • iridium oxide
  • Iridium
  • Oxygen