The smooth electric transmission is crucial for the high-efficient electrocatalysis. Herein, a series of peapod-like metallic Mx Py /C (M = Co, Ni, and Cu) composites is developed as bifunctional catalysts toward hydrogen and oxygen evolution reactions. For the first time, the metallic property of Cu3 P is confirmed through the theoretical calculation. The in-depth composition, structural and catalytic mechanism analysis of Mx Py /C discloses that the comparable activity and considerable durability of these catalysts mainly result from the strengthened synergistic effect between metallic Mx Py and carbon layer based on the unique peapod-like architecture. Especially, the atomic contact between Mx Py and carbon not only provides an open channel for electronic transmission but also ensures the integrity of peapod-like structure. Furthermore, the high electric conductivity of the inner metallic Mx Py and the outer carbon layer endows the Mx Py /C catalyst with rapid charge migration during the electrocatalytic pathway. These findings shed light on the origin of high catalytic activity of Mx Py /C and open a path for purposefully rationally synthesizing superior electrocatalysts.
Keywords: HER; bifunctional catalysts; electrocatalysis; metallic MxPy.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.