Design of experiments (DoE) in pharmaceutical development

Drug Dev Ind Pharm. 2017 Jun;43(6):889-901. doi: 10.1080/03639045.2017.1291672. Epub 2017 Feb 23.

Abstract

At the beginning of the twentieth century, Sir Ronald Fisher introduced the concept of applying statistical analysis during the planning stages of research rather than at the end of experimentation. When statistical thinking is applied from the design phase, it enables to build quality into the product, by adopting Deming's profound knowledge approach, comprising system thinking, variation understanding, theory of knowledge, and psychology. The pharmaceutical industry was late in adopting these paradigms, compared to other sectors. It heavily focused on blockbuster drugs, while formulation development was mainly performed by One Factor At a Time (OFAT) studies, rather than implementing Quality by Design (QbD) and modern engineering-based manufacturing methodologies. Among various mathematical modeling approaches, Design of Experiments (DoE) is extensively used for the implementation of QbD in both research and industrial settings. In QbD, product and process understanding is the key enabler of assuring quality in the final product. Knowledge is achieved by establishing models correlating the inputs with the outputs of the process. The mathematical relationships of the Critical Process Parameters (CPPs) and Material Attributes (CMAs) with the Critical Quality Attributes (CQAs) define the design space. Consequently, process understanding is well assured and rationally leads to a final product meeting the Quality Target Product Profile (QTPP). This review illustrates the principles of quality theory through the work of major contributors, the evolution of the QbD approach and the statistical toolset for its implementation. As such, DoE is presented in detail since it represents the first choice for rational pharmaceutical development.

Keywords: Experimental design; design space; factorial designs; mixture designs; pharmaceutical development; process knowledge; statistical thinking.

Publication types

  • Review

MeSH terms

  • Animals
  • Chemistry, Pharmaceutical
  • Data Interpretation, Statistical
  • Drug Design*
  • Drug Industry
  • Humans
  • Quality Improvement
  • Research Design*