Background: Inflammatory responses play a critical role in left ventricular remodeling after myocardial infarction (MI). Tolerogenic dendritic cells (tDCs) can modulate immune responses, inducing regulatory T cells in a number of inflammatory diseases.
Methods: We generated tDCs by treating bone marrow-derived dendritic cells with tumor necrosis factor-α and cardiac lysate from MI mice. We injected MI mice, induced by a ligation of the left anterior descending coronary artery in C57BL/6 mice, twice with tDCs within 24 hours and at 7 days after the ligation.
Results: In vivo cardiac magnetic resonance imaging and ex vivo histology confirmed the beneficial effect on postinfarct left ventricular remodeling in MI mice treated with tDCs. Subcutaneously administered infarct lysate-primed tDCs near the inguinal lymph node migrated to the regional lymph node and induced infarct tissue-specific regulatory T-cell populations in the inguinal and mediastinal lymph nodes, spleen, and infarcted myocardium, indicating that a local injection of tDCs induces a systemic activation of MI-specific regulatory T cells. These events elicited an inflammatory-to-reparative macrophage shift. The altered immune environment in the infarcted heart resulted in a better wound remodeling, preserved left ventricular systolic function after myocardial tissue damage, and improved survival.
Conclusions: This study showed that tDC therapy in a preclinical model of MI was potentially translatable into an antiremodeling therapy for ischemic tissue repair.
Keywords: dendritic cells; heart failure; macrophage; myocardial infarction; regulatory T-cells; ventricular remodeling.
© 2017 American Heart Association, Inc.