This study presents the synthesis of PtNi alloys with different volume ratios of Pt and Ni precursors in mixture solutions using dry plasma reduction under atmospheric pressure and low temperature. The developed materials are applied as efficient counter electrodes (CEs) in dye-sensitized solar cells (DSCs). The investigation of the Pt utility in PtNi alloys for electrocatalytic activity, and cost effective and highly efficient DSCs are also investigated. Compared with the reference electrodes (Pt and Ni CEs), the developed PtNi alloy CEs exhibit better reversibility as indicated by the peak-to-peak separation and better catalytic activity for the regeneration of iodide ions from triiodide ions. Thus, the DSC with the developed PtNi CEs provides higher efficiency than that of the device fabricated with the reference electrodes.
Keywords: Counter electrode; Dry plasma reduction; Dye-sensitized solar cells; Pt utility; PtNi alloy.
Copyright © 2017 Elsevier Inc. All rights reserved.