Salinity is a major abiotic stress that affects plant growth and development. Plant roots are the sites of salt uptake. Here, an isobaric tag for a relative and absolute quantitation based proteomic technique was employed to identify the differentially expressed proteins (DEPs) from seedling roots of the salt-tolerant genotype Han 12 and the salt-sensitive genotype Jimai 19 in response to salt treatment. A total of 121 NaCl-responsive DEPs were observed in Han 12 and Jimai 19. The main DEPs were ubiquitination-related proteins, transcription factors, pathogen-related proteins, membrane intrinsic protein transporters and antioxidant enzymes, which may work together to obtain cellular homeostasis in roots and to determine the overall salt tolerance of different wheat varieties in response to salt stress. Functional analysis of three salt-responsive proteins was performed in transgenic plants as a case study to confirm the salt-related functions of the detected proteins. Taken together, the results of this study may be helpful in further elucidating salt tolerance mechanisms in wheat.
Keywords: Proteomics; Root; Salt; Wheat; iTRAQ.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.