Multicomponent low molecular weight gels are useful for a range of applications. However, when mixing two components, both of which can independently form a gel, there are many potential scenarios. There is a limited understanding as to how to control and direct the assembly. Here, we focus on a pH-triggered two-component system. At high pH, colloidal structures are formed, and there is a degree of mixing of the two gelators. As the pH is decreased, there is a complex situation, where one gelator directs the assembly in a "sergeants and soldiers" manner. The second gelator is not fully incorporated, and the remainder forms an independent network. The result is that there is a nonlinear dependence on the final mechanical properties of the gels, with the storage or loss modulus being very dependent on the absolute ratio of the two components in the system.