mRNA-miRNA integrative analysis of diabetes-induced cardiomyopathy in rats

Front Biosci (Schol Ed). 2017 Mar 1;9(2):194-229. doi: 10.2741/s483.

Abstract

An integrative analysis of miRNA and mRNA expression profiles in left ventricle (LV) of diabetes-induced rats was performed to elucidate the role of miRNAs and their mRNAs target in diabetic cardiomyopathy (DCM). mRNA (GSE4745) and miRNA (GSE44179) datasets were downloaded from Gene Expression Omnibus 2R (GEO2R) and differentially expressed mRNAs and miRNAs were selected. Cardiotoxicity-related mRNAs (n=7) were analyzed by Ingenuity Pathway Analyses 6 (IPA) and regulatory miRNAs (n=639) were identified using TargetScan 7.1. web dataset. The integrative analysis was performed between miRNAs differentially expressed in GSE44179 and regulatory TargetScan-detected miRNAs of mRNAs differentially expressed in GSE4745. Pla2g2a and Hk2 mRNAs were up-and-down regulated, respectively, in GSE4745 on days 3 and 42 after diabetes-induction. The Pla2g2a regulatory miRNAs, rno-miR-877, rno-miR-320 and rno-miR-214, were down-regulated, and Hk2 regulatory miRNAs, rno-miR-17, rno-miR-187, rno-miR-34a, rno-miR-322, rno-miR-188, rno-miR-532 and rno-miR-21, were up-regulated in GSE44179 dataset. These results are suggestive that Pla2g2a and Hk2 mRNAs and their regulatory miRNAs play a role in DCM pathogenesis and they may be potential circulating biomarkers to detect early cardiovascular complications in diabetic patients.

MeSH terms

  • Animals
  • Cardiomyopathies / genetics*
  • Cardiomyopathies / metabolism
  • Diabetes Mellitus / genetics*
  • Diabetes Mellitus / metabolism
  • Down-Regulation
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism*
  • Rats

Substances

  • MicroRNAs
  • RNA, Messenger