Objective: Familial pituitary tumour syndromes (FPTS) account for 5% of pituitary adenomas. Multi-gene analysis via next-generation sequencing (NGS) may unveil greater prevalence and inform clinical care. We aimed to identify germline variants in selected patients with pituitary adenomas using a targeted NGS panel.
Design: We undertook a nationwide cross-sectional study of patients with pituitary adenomas with onset ≤40 years of age and/or other personal/family history of endocrine neoplasia. A custom NGS panel was performed on germline DNA to interrogate eight FPTS genes. Genome data were analysed via a custom bioinformatic pipeline, and validation was performed by Sanger sequencing. Multiplex ligation-dependent probe amplification (MLPA) was performed in cases with heightened suspicion for MEN1, CDKN1B and AIP mutations. The main outcomes were frequency and pathogenicity of rare variants in AIP, CDKN1B, MEN1, PRKAR1A, SDHA, SDHB, SDHC and SDHD.
Results: Forty-four patients with pituitary tumours, 14 of whom had a personal history of other endocrine tumours and/or a family history of pituitary or other endocrine tumours, were referred from endocrine tertiary-referral centres across Australia. Eleven patients (25%) had a rare variant across the eight FPTS genes tested: AIP (p.A299V, p.R106C, p.F269F, p.R304X, p.K156K, p.R271W), MEN1 (p.R176Q), SDHB (p.A2V, p.S8S), SDHC (p.E110Q) and SDHD (p.G12S), with two patients harbouring dual variants. Variants were classified as pathogenic or of uncertain significance in 9/44 patients (20%). No deletions/duplications were identified in MEN1, CDKN1B or AIP.
Conclusions: A high yield of rare variants in genes implicated in FPTS can be found in selected patients using an NGS panel. It may also identify individuals harbouring more than one rare variant.
© 2017 European Society of Endocrinology.