We study numerically the critical behavior of a modified, active Asakura-Oosawa model for colloid-polymer mixtures. The colloids are modeled as self-propelled particles with Vicsek-like interactions. This system undergoes phase separation between a colloid-rich and a polymer-rich phase, whereby the phase diagram depends on the strength of the Vicsek-like interactions. Employing a subsystem-block-density distribution analysis, we determine the critical point and make an attempt to estimate the critical exponents. In contrast to the passive model, we find that the critical point is not located on the rectilinear diameter. A first estimate of the critical exponents β and ν is consistent with the underlying 3d-Ising universality class observed for the passive model.