Epileptic encephalopathies account for a large proportion of the intractable early-onset epilepsies and are characterized by frequent seizures and poor developmental outcome. The epileptic encephalopathies can be loosely divided into two related groups of named syndromes. The first comprises epilepsies where continuous EEG changes directly result in cognitive and developmental dysfunction. The second includes patients where cognitive impairment is present at seizure onset and is due to the underlying etiology but the epileptic activity may then worsen the cognitive abilities over time. Recent, large-scale exome studies have begun to establish the genetic architecture of the epileptic encephalopathies, resulting in a re-consideration of the boundaries of these named syndromes. The emergence of this genetic architecture has lead to three main pathophysiological concepts to provide a mechanistic framework for these disorders. In this article, we will review the classic syndromes, the most significant genetic findings, and relate both to the pathophysiological understanding of epileptic encephalopathies.
Keywords: Channelopathy; EEG; Epileptic encephalopathies; Genetics; Interneuronopathy.