Disease risk score (DRS) can be used to adjust the confounding effects on data with high dimensions and can reduce related bias through balancing the risk or probability, regarding the development of some specific diseases, between the two compared groups. The DRS approach thus can be applied to studies of pharmacoepidemiology when administrative medical database is used for data analysis. Although DRS functions are similarly to the propensity scores (PS) under many situations, even with some advantages over PS or conventional analytical methods in some special exposure settings, the usage of DRS is far limited than the PS method. Considering the important application value of DRS in pharmacoepidemiologic studies, we are introducing the theory, model, estimation and application of DRS, to present reference for the development of DRS method in the pharmacoepidemiologic studies.
疾病风险评分通过平衡不同组间研究对象的基线疾病风险以控制高维数据结构中的混杂效应,从而减小暴露因素效应估计的偏倚,因此在利用医疗数据库探索药物疗效或不良反应等规律的药物流行病学研究中有重要的应用价值。尽管疾病风险评分方法在很多情况下具有与倾向性评分相似的作用,而且在一些特殊暴露条件的研究中具有倾向性评分与传统混杂控制方法不可比拟的优势,但目前疾病风险评分在药物流行病学研究中应用范围远不及倾向性评分广泛。基于对疾病风险评分方法在药物流行病学研究中应用价值的考量,本文阐述了疾病风险评分的原理、模型构建、评分估计和应用的方法,以期为疾病风险评分方法在药物流行病学研究中的应用提供参考。.
Keywords: Administrative medical databases; Confounder control; Disease risk score; Pharmacoepidemiologic studies.