Background and purpose: A matricellular protein tenascin-C is implicated in early brain injury after experimental subarachnoid hemorrhage (SAH). This study first evaluated the role of another matricellular protein periostin and the relationships with tenascin-C in post-SAH early brain injury.
Methods: Wild-type (n=226) and tenascin-C knockout (n=9) C57BL/6 male adult mice underwent sham or filament perforation SAH modeling. Vehicle, anti-periostin antibody, or recombinant periostin was randomly administrated by an intracerebroventricular injection at 30 minutes post-modeling. Neuroscores, SAH grading, brain water content, immunostaining, and Western blotting were blindly evaluated at 24 to 48 hours post-SAH.
Results: Periostin was induced in brain capillary endothelial cells and neurons at 24 hours post-SAH. Anti-periostin antibody improved post-SAH neurobehavior, brain edema, and blood-brain barrier disruption associated with downregulation of tenascin-C, inactivation of p38, extracellular signal-related kinase 1/2 and matrix metalloproteinase-9, and subsequent preservation of zona occludens-1. Recombinant periostin aggravated post-SAH brain edema and tenascin-C induction. Tenascin-C knockout prevented post-SAH neurobehavioral impairments and periostin induction.
Conclusions: Periostin may cause post-SAH early brain injury through activating downstream signaling pathways and interacting with tenascin-C, providing a novel approach for the treatment of early brain injury.
Keywords: blood–brain barrier; early brain injury; periostin; subarachnoid hemorrhage; tenascin-C.
© 2017 American Heart Association, Inc.