Determination of the Disulfide Structure of Murine Meteorin, a Neurotrophic Factor, by LC-MS and Electron Transfer Dissociation-High-Energy Collisional Dissociation Analysis of Proteolytic Fragments

Anal Chem. 2017 Apr 4;89(7):4021-4030. doi: 10.1021/acs.analchem.6b04600. Epub 2017 Mar 13.

Abstract

Meteorin and Cometin (Meteorin-like) are secreted proteins belonging to a newly discovered growth factor family. Both proteins play important roles in neural development and may have potential as therapeutic targets or agents. Meteorin and Cometin are homologues and contain ten evolutionarily conserved Cys residues across a wide variety of species. However, the status of the Cys residues has remained unknown. Here, we have successfully determined the disulfide structure for murine Meteorin by LC-MS analysis of fragments generated by trypsin plus endoprotease-Asp-N. For proteolytic fragments linked by more than one disulfide bond, we used electron transfer dissociation (ETD) to partially dissociate disulfide bonds followed by high-energy collisional dissociation (HCD) to determine disulfide linkages. Our analysis revealed that the ten Cys residues in murine Meteorin form five disulfide bonds with Cys7 (C1) linked to Cys28 (C2), Cys59 (C3) to Cys95 (C4), Cys148 (C5) to Cys219 (C8), Cys151 (C6) to Cys243 (C9), and Cys161 (C7) to Cys266 (C10). Since the ten Cys residues are highly conserved in Meteorin and Cometin, it is likely that the disulfide linkages are also conserved. This disulfide structure information should facilitate structure-function relationship studies on this new class of neurotrophic factors and also assist in evaluation of their therapeutic potentials.

MeSH terms

  • Animals
  • Chromatography, Liquid
  • Disulfides / analysis*
  • Electron Transport
  • Energy Transfer
  • Mice
  • Molecular Structure
  • Nerve Growth Factors / chemistry*
  • Peptide Fragments / chemistry*
  • Proteolysis*
  • Tandem Mass Spectrometry

Substances

  • Disulfides
  • Nerve Growth Factors
  • Peptide Fragments