Background: Motor neurone disease (MND) is a rare neurodegenerative condition, with poorly understood aetiology. Large, population-based, prospective cohorts will enable powerful studies of the determinants of MND, provided identification of disease cases is sufficiently accurate. Follow-up in many such studies relies on linkage to routinely-collected health datasets. We systematically evaluated the accuracy of such datasets in identifying MND cases.
Methods: We performed an electronic search of MEDLINE, EMBASE, Cochrane Library and Web of Science for studies published between 01/01/1990-16/11/2015 that compared MND cases identified in routinely-collected, coded datasets to a reference standard. We recorded study characteristics and two key measures of diagnostic accuracy-positive predictive value (PPV) and sensitivity. We conducted descriptive analyses and quality assessments of included studies.
Results: Thirteen eligible studies provided 13 estimates of PPV and five estimates of sensitivity. Twelve studies assessed hospital and/or death certificate-derived datasets; one evaluated a primary care dataset. All studies were from high income countries (UK, Europe, USA, Hong Kong). Study methods varied widely, but quality was generally good. PPV estimates ranged from 55-92% and sensitivities from 75-93%. The single (UK-based) study of primary care data reported a PPV of 85%.
Conclusions: Diagnostic accuracy of routinely-collected health datasets is likely to be sufficient for identifying cases of MND in large-scale prospective epidemiological studies in high income country settings. Primary care datasets, particularly from countries with a widely-accessible national healthcare system, are potentially valuable data sources warranting further investigation.