Ovarian fragment sizes affect viability and morphology of preantral follicles during storage at 4°C

Reproduction. 2017 May;153(5):577-587. doi: 10.1530/REP-16-0621. Epub 2017 Feb 28.

Abstract

The method of transportation and the conditions imposed on the ovarian tissue are pivotal aspects for the success of ovarian tissue cryopreservation (OTC). The aim of this study was to evaluate the effect of the size of the ovarian tissue (e.g. whole ovary, biopsy size and transplant size) during different times of storage (0, 6, 12 and 24 h) on the structural integrity of equine ovarian tissue transported at 4°C. Eighteen pairs of ovaries from young mares (<10 years old) were harvested in a slaughterhouse and processed to simulate the fragment sizes (biopsy and transplant size groups) or kept intact (whole ovary group) and stored at 4°C for up to 24 h in α-MEM-enriched solution. The effect of the size of the ovarian tissue was observed on the morphology of preantral follicles, stromal cell density, DNA fragmentation and mitochondrial membrane potential. The results showed that (i) biopsy size fragments had more morphologically normal preantral follicles after 24 h of storage at 4°C; (ii) mitochondrial membrane potential was the lowest during each storage time when the whole ovary was used; (iii) DNA fragmentation rate in the ovarian cells of all sizes of fragments increased as storage was prolonged and (iv) transplant size fragments had increased stromal cell density during storage at cool temperature. In conclusion, the biopsy size fragment was the best to preserve follicle morphology for long storage (24 h); however, transportation/storage should be prior determined according to the distance (time of transportation) between patient and reproduction centers/clinics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cryopreservation / methods
  • Cryopreservation / standards
  • Cryopreservation / veterinary*
  • Female
  • Horses
  • Organic Chemicals
  • Ovarian Follicle / cytology*
  • Ovarian Follicle / physiology
  • Ovary / cytology*
  • Ovary / physiology
  • Temperature
  • Time Factors
  • Transportation

Substances

  • Organic Chemicals
  • alpha minimal essential medium