Spin-Dependent Weakly-Interacting-Massive-Particle-Nucleon Cross Section Limits from First Data of PandaX-II Experiment

Phys Rev Lett. 2017 Feb 17;118(7):071301. doi: 10.1103/PhysRevLett.118.071301. Epub 2017 Feb 13.

Abstract

New constraints are presented on the spin-dependent weakly-interacting-massive-particle–- (WIMP-)nucleon interaction from the PandaX-II experiment, using a data set corresponding to a total exposure of 3.3×10^{4} kg day. Assuming a standard axial-vector spin-dependent WIMP interaction with ^{129}Xe and ^{131}Xe nuclei, the most stringent upper limits on WIMP-neutron cross sections for WIMPs with masses above 10 GeV/c^{2} are set in all dark matter direct detection experiments. The minimum upper limit of 4.1×10^{-41} cm^{2} at 90% confidence level is obtained for a WIMP mass of 40 GeV/c^{2}. This represents more than a factor of 2 improvement on the best available limits at this and higher masses. These improved cross-section limits provide more stringent constraints on the effective WIMP-proton and WIMP-neutron couplings.