Objective: Spontaneous high frequency oscillations (HFOs; ripples 80-250Hz, fast ripples (FRs) 250-500Hz) are biomarkers for epileptogenic tissue in focal epilepsy. Single pulse electrical stimulation (SPES) can evoke HFOs. We hypothesized that stimulation distinguishes pathological from physiological ripples and compared the occurrence of evoked and spontaneous HFOs within the seizure onset zone (SOZ) and eloquent functional areas.
Methods: Ten patients underwent SPES during 2048Hz electrocorticography (ECoG). Evoked HFOs in time-frequency plots and spontaneous HFOs were visually analyzed. We compared electrodes with evoked and spontaneous HFOs for: percentages in the SOZ, sensitivity and specificity for the SOZ, percentages in functional areas outside the SOZ.
Results: Two patients without spontaneous FRs showed evoked FRs in the SOZ. Percentages of evoked and spontaneous HFOs in the SOZ were similar (ripples 32:33%, p=0.77; FRs 43:48%, p=0.63), but evoked HFOs had generally a lower specificity (ripples 45:69%, p=0.02; FRs 83:92%, p=0.04) and higher sensitivity (ripples 85:70%, p=0.27; FRs 52:37%, p=0.05). More electrodes with evoked than spontaneous ripples were found in functional (54:30%, p=0.03) and 'silent' areas (57:27%, p=0.01) outside the SOZ.
Conclusions: SPES can elicit SOZ-specific FRs in patients without spontaneous FRs, but activates ripples in all areas.
Significance: SPES is an alternative for waiting for spontaneous HFOs, but does not warrant exclusively pathological ripples.
Keywords: Epilepsy surgery; High frequency oscillations; Intracranial electrodes; Physiological ripples; Single pulse electrical stimulation.
Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.