Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano)TiO2 particles

Neuro Endocrinol Lett. 2016 Dec 18;37(Suppl1):13-16.

Abstract

Objectives: Experimental studies using nanoscale TiO2 have documented lung injury, inflammation, oxidative stress, and genotoxicity. Human health data are extremely scarce.

Methods: In exhaled breath condensate (EBC) and urine of 22 office employees occupationally exposed to TiO2 during their visit in the production workshops for average 14±9 min/day a panel of biomarkers of nucleic acids and proteins oxidation was studied, specifically 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU), o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr). Examination was performed also in 14 comparable controls.

Results: The median respirable TiO2 mass concentration in the workshops was 0.40 mg/m3, median number concentration was 2.32×104 particles/cm3 with 80% of the particles being <100 nm in diameter. All 6 markers of oxidation were elevated in EBC in factory office employees relative to controls (p<0.01). Significant association was found between their job in TiO2 production plant and 5 markers of oxidation (except 3-NOTyr) in the EBC in multivariate analysis. No elevation of markers was detected in the urine.

Conclusion: This pilot study suggests that even short nanoTiO2 exposure may lead to pulmonary oxidative stress; however this effect may be short-term and reversible. The clinical significance of these findings is unclear and more studies are needed.

MeSH terms

  • Adult
  • Air Pollutants / adverse effects*
  • Humans
  • Male
  • Metal Nanoparticles / adverse effects*
  • Middle Aged
  • Occupational Diseases / blood*
  • Occupational Exposure / adverse effects*
  • Oxidative Stress*
  • Pilot Projects
  • Titanium / adverse effects*

Substances

  • Air Pollutants
  • Titanium