A variety of free radicals (FR)/reactive oxygen species (ROS) have been proposed to dominate methylmercury (MeHg) photodegradation, primarily based on the results of FR/ROS scavenger addition experiments. However, in addition to eliminating FR/ROS, the added scavengers may also affect the experimental results by altering some water chemical properties, resulting in a misleading assessment of the importance of FR/ROS. In this study, 20 common FR/ROS scavengers were evaluated in terms of their influence on light absorbance, pH, MeHg analysis, MeHg-dissolved organic matter (DOM) complexation, and the scavenger-induced degradation of MeHg. Only nine scavengers were identified to be appropriate for investigating MeHg photodegradation. By utilizing these appropriate scavengers, direct photodegradation of MeHg-DOM complexes was found to be the major pathway of MeHg photodegradation in Laoshan Reservoir water and Stone Old Beach seawater. In contrast, MeHg photodegradation in Ink River water primarily occurs through both ·OH and 3DOM* mediated indirect pathways and direct photodegradation of MeHg-DOM complexes. The diverse pathways of MeHg photodegradation in the tested water may be due to differences in water chemical properties. A severe overestimation of the role of FR/ROS was observed when several improper but commonly used scavengers were adopted, highlighting the necessity of utilizing appropriate scavengers.