Intra-operative ultrasound as an imaging based method has been recognized as an effective solution to compensate non rigid brain shift problem in recent years. Measuring brain shift requires registration of the pre-operative MRI images with the intra-operative ultrasound images which is a challenging task. In this study a novel hybrid method based on the matching echogenic structures such as sulci and tumor boundary in MRI with ultrasound images is proposed. The matching echogenic structures are achieved by optimizing the Residual Complexity (RC) in the curvelet domain. At the first step, the probabilistic map of the MR image is achieved and the residual image as the difference between this probabilistic map and intra-operative ultrasound is obtained. Then curvelet transform as a sparse function is used to minimize the complexity of residual image. The proposed method is a compromise between feature-based and intensity-based approaches. Evaluation was performed using 14 patients data set and the mean of registration error reached to 1.87 mm. This hybrid method based on RC improves accuracy of nonrigid multimodal image registration by 12.5% in a computational time compatible with clinical use.