Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results

Molecules. 2017 Mar 6;22(3):408. doi: 10.3390/molecules22030408.

Abstract

The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m³ and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10-3 m³. The PCO device was composed of a pleated photocatalytic filter (1100 cm²) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm-2; (ii) air velocity v from 0.2 to 1.9 m·s-1; and (iii) initial toluene concentration C₀ (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m³·h-1, were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

Keywords: Clean Air Delivery Rate (CADR); Volatile Organic Compounds (VOCs); air cleaner; indoor air quality; photocatalysis.

MeSH terms

  • Air Filters* / standards
  • Air Pollution, Indoor / analysis*
  • Algorithms
  • Catalysis
  • Models, Theoretical
  • Oxidation-Reduction
  • Photochemistry / methods*
  • Volatile Organic Compounds

Substances

  • Volatile Organic Compounds