Health agencies have declared the recent Zika virus (ZIKV) infection an epidemic and a public health emergency of global concern due to its association with microcephaly and serious neurological disorders. The unavailability of effective drugs, vaccines, and diagnostic tools increases the demand for efficient analytical devices to detect ZIKV infection. However, high costs, longer diagnostic times, and stringent expertise requirements limit the utility of reverse transcriptase-PCR methods for rapid diagnostics. Therefore, developing portable, sensitive, selective, and cost-effective sensing systems to detect ZIKV at picomolar concentrations in biofluids would be a breakthrough in diagnostics and therapeutics. This paper highlights the advancements in developing smart sensing strategies to monitor ZIKV progression, with rapid point-of-care diagnostics as the ultimate aim.
Keywords: Zika virus infection; electrochemical biosensor; point-of-care sensing systems.
Copyright © 2016 Elsevier Ltd. All rights reserved.