Genes encoding the minor A component of bovine calbindins D9k--the smallest protein known with a pair of EF-hand calcium-binding sites--with amino acid substitutions and/or deletions have been synthesized and expressed in Escherichia coli and characterized with different biophysical techniques. The mutations are confined to the N-terminal Ca2+-binding site and constitute Pro-20----Gly (M1), Pro-20----Gly and Asn-21 deleted (M2), Pro-20 deleted (M3), and Tyr-13----Phe (M4). 1H, 43Ca, and 113Cd NMR studies show that the structural changes induced are primarily localized in the modified region, with hardly any effects on the C-terminal Ca2+-binding site. The Ca2+ exchange rate for the N-terminal site changes from 3 s-1 in the wild-type protein (M0) and M4 to 5000 s-1 in M2 and M3, whereas there is no detectable variation in the Ca2+ exchange from the C-terminal site. The macroscopic Ca2+-binding constants have been obtained from equilibration in the presence of the fluorescent chelator 2-[[2-[bis(carboxymethyl)-amino]- 5-methylphenoxy]methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline or by using a Ca2+-selective electrode. The Ca2+ affinity of M4 was similar to that of M0, whereas the largest differences were found for the second stoichiometric step in M2 and M3. Microcalorimetric data show that the enthalpy of Ca2+ binding is negative (-8 to -13 kJ.mol-1) for all sites except the N-terminal site in M2 and M3 (+5 kJ.mol-1). The binding entropy is strongly positive in all cases. Cooperative Ca2+ binding in M0 and M4 was established through the values of the macroscopic Ca2+-binding constants. Through the observed changes in the 1H NMR spectra during Ca2+ titrations we could obtain ratios between site binding constants in M0 and M4. These ratios in combination with the macroscopic binding constants yielded the interaction free energy between the sites delta delta G as -5.1 +/- 0.4 kJ.mol-1 (M0) and less than -3.9 kJ.mol-1 (M4). There is evidence (from 113Cd NMR) for site-site interactions also in M1, M2, and M3, but the magnitude of delta delta G could not be determined because of sequential Ca2+ binding.