SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis

Mol Cancer. 2017 Mar 14;16(1):62. doi: 10.1186/s12943-017-0632-9.

Abstract

Background: High levels of SOX2 protein are correlated with increased dissemination of breast cancer. However, the underlying molecular mechanisms are not fully understood.

Methods: In this study we investigate the role of SOX2 in breast cancer metastasis using multiple in vitro and in vivo assays including cell culture, shRNA-mediated knockdown, wound healing, colony formation, transwell chamber, xenograft and tail vein injection. Moreover, western blot, immunostaining, microarray and real-time PCR were used to determine the change of protein and miRNA levels. Luciferase assays were also used to evaluate activity which TUSC3 is a target of miR-181a-5p and miR-30e-5p, and the clinical survival relevance was analyzed by Kaplan-Meier analysis.

Results: We identified a novel pathway involving SOX2 regulation of microRNAs to control the proliferation and migration of breast cancer cells. shRNA-mediated knockdown of SOX2 inhibits breast cancer cell expansion and migration. More importantly, we found that these changes are accompanied by significant reduction in the levels of two microRNAs, miR-181a-5p and miR-30e-5p. Overexpression of these two microRNAs leads to reduced protein levels of Tumor Suppressor Candidate 3 (TUSC3) in breast cancer cells; mutations of the potential binding sites in the 3'-UTR of TUSC3 abrogate the inhibitory effects of the microRNAs. We further found that upregulation of TUSC3 expression leads to reduced proliferation and migration of breast cancer cells. In human breast cancer samples the levels of TUSC3 protein are inversely correlated with those of SOX2 protein.

Conclusions: Taken together, our work reveals a novel SOX2-mediated regulatory axis that plays critical roles in the proliferation, migration and invasiveness of breast cancer cells. Targeting this axis may provide beneficial effect in the treatment of breast cancer.

Keywords: Breast cancer; Sox2; Tumourigenesis; miRNA.

MeSH terms

  • Animals
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / mortality
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Disease Models, Animal
  • Disease Progression
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Gene Knockdown Techniques
  • Heterografts
  • Humans
  • Kaplan-Meier Estimate
  • Membrane Proteins / genetics*
  • Mice
  • MicroRNAs / genetics*
  • Models, Biological
  • Neoplasm Metastasis
  • Prognosis
  • RNA Interference*
  • SOXB1 Transcription Factors / genetics*
  • Signal Transduction
  • Tumor Suppressor Proteins / genetics*

Substances

  • MIRN-181 microRNA, human
  • MIRN30b microRNA, human
  • Membrane Proteins
  • MicroRNAs
  • SOX2 protein, human
  • SOXB1 Transcription Factors
  • TUSC3 protein, human
  • Tumor Suppressor Proteins