When human platelets prelabeled with [32P] orthophosphate were loaded with Quin-2, the 32P-incorporation in phosphatidic acid, phosphatidylinositol-4 phosphate and phosphatidylinositol-4,5 bisphosphate increased, that in phosphatidylinositol decreased. These effects occurred in a Quin-2-concentration-dependent manner. On stimulation of the serotonin-S2 receptor, signal transduction, measured as changes in labeling in phospholipids and phosphoproteins, was altered in the presence of the fluorophore. Microscopic evaluation illustrated that Quin-2 affected platelet morphology as well in resting as in stimulated platelets. A correlation between platelet shape change and myosin light chain phosphorylation was apparent. The data evidence that the Quin-2 that is widely used for fluorometric determination of intracellular Ca2+, affects the metabolism of inositol-containing phospholipids whose breakdown is a key event in Ca2+-mobilization on excitatory platelet activation. These fluorophore-induced alterations might, besides the Ca2-chelating properties, play an important role in the Ca2+-dependent signalling processes in these cells.