Effect of grain structure on Charpy impact behavior of copper

Sci Rep. 2017 Mar 17:7:44783. doi: 10.1038/srep44783.

Abstract

Nanostructured (NS) and ultrafine-grained (UFG) materials have high strength and relatively low ductility. Their toughness has not been comprehensively investigated. Here we report the Charpy impact behavior and the corresponding microstructural evolutions in UFG Cu with equi-axed and elongated grains which were prepared by equal channel angular pressing (ECAP) for 2 and 16 passes at room temperature. It is found that their impact toughness (48 J/cm2) is almost comparable to that of coarse grained (CG) Cu: 55 J/cm2. The high strain rate during the Charpy impact was found to enhance the strain hardening capability of the UFG Cu due to the suppression of dynamic dislocation recovery. The crack in the CG Cu was blunted by dislocation-slip mediated plastic deformation, while the cracks in the UFG Cu were formed at grain boundaries and triple junctions due to their limited plasticity. Near the crack surfaces the elongated grains in ECAP-2 sample were refined by recrystallization, while equi-axed grains in the ECAP-16 sample grew larger.

Publication types

  • Research Support, Non-U.S. Gov't