We studied the rainy season dispersal of the fish Poecilia gillii (Poeciliidae) from pools in a steepgradient, intermittent stream in Santa Rosa National Park, Costa Rica. The stream consisted of about 20 pools separated by dry streambed except during two floods and subsequent brief periods of flow. Individually recognizable tags permitted mark-recapture estimates of population size and information on individual movements. The first flood was very severe, with pools losing an average of 75% of their populations (range 12-99%). Most of the lost fish died by becoming trapped in desiccating pools. Males and juveniles were more likely to be lost than were females. Population loss was negatively related to pool volume and positively related to streambed slope. In addition, population loss was positively related to preflood population size when the effects of pool volume and slope were removed indicating that pools with higher densities lost more fish. Of the fish recaptured after the flood, the average proportion found in the pool in which they had been tagged varied from 16%-96%, depending on the area of the stream. Of fish that moved, 92% went downstream. The second flood was less severe though stream flow lasted as long, and there was little effect on the pool populations. Involuntary flushing during the flood and voluntary departure apparently interacted to produce the observed patterns.
Keywords: Dispersal; Emigration; Fish population dynamics; Mortality; Tropical stream ecology.