This study examined the potential pathogenicity of Shiga toxin-producing Escherichia coli (STEC) in feces of sika deer by PCR binary typing (P-BIT), using 24 selected STEC genes. A total of 31 STEC strains derived from sika deer in 6 prefectures of Japan were O-serotyped and found to be O93 (n=12), O146 (n=5), O176 (n=3), O130 (n=3), O5 (n=2), O7 (n=1), O96 (n=1), O116 (n=1), O141 (n=1), O157 (n=1) and O-untypable (n=1). Of the 31 STEC strains, 13 carried both stx1 and stx2, 5 carried only stx1, and 13 carried one or two variants of stx2. However, no Stx2 production was observed in 3 strains that carried only stx2: the other 28 strains produced the appropriate Stx. P-BIT analysis showed that the 5 O5 strains from two wild deer formed a cluster with human STEC strains, suggesting that the profiles of the presence of the 24 P-BIT genes in the deer strains were significantly similar to those in human strains. All of the other non-O157 STEC strains in this study were classified with strains from food, domestic animals and humans in another cluster. Good sanitary conditions should be used for deer meat processing to avoid STEC contamination, because STEC is prevalent in deer and deer may be a potential source of STEC causing human infections.
Keywords: Shiga toxin-producing Escherichia coli (STEC); deer; wild animal.