Background: Traumatic brain injury (TBI) has been identified as a risk factor for Parkinson's disease (PD). Motor dysfunction among TBI-exposed elders without PD has not been well characterized. We sought to determine whether remote TBI is a risk factor for motor dysfunction on exam and functionally relevant motor dysfunction in day-to-day life among independently living elders without PD.
Methods: This is a cross-sectional cohort study of independently living retired military veterans aged 50 or older with (n = 78) and without (n = 85) prior TBI-all without diagnosed PD. To characterize multidimensional aspects of motor function on exam, the Unified Parkinson's Disease Rating Scale (UPDRS) Motor Examination was performed by a board-certified neurologist and used to calculate a modified UPDRS (mUPDRS) global motor score and four domain scores (tremor, rigidity, bradykinesia, and posture/gait). Functionally relevant motor dysfunction was assessed via self-report of falls within the past year.
Results: In analyses adjusted for demographics and comorbidities that differed between groups, compared with veterans without TBI, those with moderate-to-severe TBI were more likely to have fallen in past year (33% vs. 14%, risk ratio 2.5 [95% confidence interval 1.1-5.4]), had higher (worse) mUPDRS global motor (p = .03) and posture/gait scores (p = .02), but not higher tremor (p = .70), rigidity (p = .21), or bradykinesia scores (p = .22). Mild TBI was not associated with worse motor function.
Conclusions: Remote moderate-to-severe TBI is a risk factor for motor dysfunction-defined as recent falls and impaired posture/gait-among older veterans. TBI-exposed older adults may be ideal candidates for aggressive fall-screening and prevention strategies.
Keywords: Falls; Parkinson’s disease; Risk factors.
© The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: [email protected].