Motivation: Enhancer elements are noncoding stretches of DNA that play key roles in controlling gene expression programmes. Despite major efforts to develop accurate enhancer prediction methods, identifying enhancer sequences continues to be a challenge in the annotation of mammalian genomes. One of the major issues is the lack of large, sufficiently comprehensive and experimentally validated enhancers for humans or other species. Thus, the development of computational methods based on limited experimentally validated enhancers and deciphering the transcriptional regulatory code encoded in the enhancer sequences is urgent.
Results: We present a deep-learning-based hybrid architecture, BiRen, which predicts enhancers using the DNA sequence alone. Our results demonstrate that BiRen can learn common enhancer patterns directly from the DNA sequence and exhibits superior accuracy, robustness and generalizability in enhancer prediction relative to other state-of-the-art enhancer predictors based on sequence characteristics. Our BiRen will enable researchers to acquire a deeper understanding of the regulatory code of enhancer sequences.
Availability and implementation: Our BiRen method can be freely accessed at https://github.com/wenjiegroup/BiRen .
Contact: [email protected] or [email protected].
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected]