Background: The number of pulmonary tuberculosis (PTB) cases in China ranks third in the world. A continuous increase in cases has recently been recorded in Zhaotong prefecture-level city, which is located in the northeastern part of Yunnan province. This study explored the space-time dynamics of PTB cases in Zhaotong to provide useful information that will help guide policymakers to formulate effective regional prevention and control strategies.
Methods: The data on PTB cases were extracted from the nationwide tuberculosis online registration system. Time series and spatial cluster analyses were applied to detect PTB temporal trends and spatial patterns at the town level between 2011 and 2015 in Zhaotong. Three indicators of PTB treatment registration history were used: initial treatment registration rate, re-treatment registration rate, and total PTB registration rate.
Results: Seasonal trends were detected with an apparent symptom onset peak during the winter season and a registration peak during the spring season. A most likely cluster and six secondary clusters were identified for the total PTB registration rate, one most likely cluster and five secondary clusters for the initial treatment registration rate, and one most likely cluster for the re-treatment registration rate. The most likely cluster of the three indicators had a similar spatial distribution and size in Zhenxiong County, which is characterised by a poor socio-economic level and the largest population in Yunnan.
Conclusion: This study identified temporal and spatial distribution of PTB in a high PTB burden area using existing health data. The results of the study provide useful information on the prevailing epidemiological situation of PTB in Zhaotong and could be used to develop strategies for more effective PTB control at the town level. The cluster that overlapped the three PTB indicators falls within the geographic areas where PTB control efforts should be prioritised.
Keywords: China; Pulmonary Tuberculosis; Space-time clusters; Tuberculosis; Yunnan.