Aluminium (Al)-doped zinc oxide (ZnO) nanowires (NWs) with a unique core-shell structure and a Δ-doping profile at the interface were successfully grown using a combination of chemical vapor deposition re-growth and few-layer AlxOy atomic layer deposition. Unlike the conventional heavy doping which degrades the near-band-edge (NBE) luminescence and increases the electron-phonon coupling (EPC), it was found that there was an over 20-fold enhanced NBE emission and a notably-weakened EPC in this type of interfacially Al-doped ZnO NWs. Further experiments revealed a greatly suppressed nonradiative decay process and a much enhanced radiative recombination rate. By comparing the finite-difference time-domain simulation with the experimental results from intentionally designed different NWs, this enhanced radiative decay rate was attributed to the Purcell effect induced by the confined and intensified optical field within the interfacial layer. The ability to manipulate the confinement, transport and relaxation dynamics of ZnO excitons can be naturally guaranteed with this unique interfacial Δ-doping strategy, which is certainly desirable for the applications using ZnO-based nano-photonic and nano-optoelectronic devices.