Genetic variations in certain genes may alter the susceptibility to lymphoma. We searched electronic databases and selected candidate single-nucleotide polymorphisms (SNPs) located within 3'-untranslated regions (3'-UTRs) that might affect miRNA-binding ability in the 50 most dysregulated genes in lymphoma for further study. We found that rs1042752-located in the 3'-UTR of POU2AF1, which plays a vital role in lymphomagenesis-was significantly associated with lymphoma risk in a case-control study with 793 patients and 939 controls. Compared with individuals with the rs1042752TT genotype, those with the rs1042752CC genotype had a higher risk of lymphoma (OR = 2.14, 95% CI: 1.55-2.95, P < 0.001), even in stratified analysis for non-Hodgkin lymphoma (OR = 4.58, 95% CI: 2.38-8.81, P < 0.001), B-cell lymphoma (OR = 4.89, 95% CI: 2.46-9.73, P < 0.001), T-cell lymphoma (OR = 4.20, 95% CI: 1.76-10.05, P = 0.001), and Hodgkin lymphoma (OR = 3.62, 95% CI: 1.25-10.46, P = 0.018). Similar results were also observed in a recessive genetic model. Database findings suggested that rs1042752 might affect the interaction of POU2AF1 mRNA with hsa-miR-633. Functional assays confirmed that rs1042752C altered the binding site of hsa-miR-633 and increased POU2AF1 expression in Ramos, HuT 102, and Jurkat E6-1 cell lines. These findings demonstrate for the first time that functional polymorphism in the 3'-UTR of POU2AF1 is associated with susceptibility, and that SNP interaction with hsa-miR-633 affects gene expression and increases the risk of lymphoma.
Keywords: 3'-untranslated region; lymphoma; microRNA; single nucleotide polymorphism; susceptibility.
© 2017 Wiley Periodicals, Inc.