Methotrexate (MTX; an anti-folate) and etanercept (ET; a TNF-α inhibitor) are used against arthritis; however, limitations like short biological half-life, low cutaneous absorption, and acidic instability limit their clinical relevance. Therefore, the aim of the investigation was to develop albumin coupled lipid nanoemulsion of MTX and ET for improved efficacy by virtue of their controlled release and specificity at the arthritic site. This emulsion was prepared by high-speed homogenization and stabilized using cholesterol. Lipid nanoemulsion of MTX and ET (MTX+ET-LNE) was coupled with albumin (MTX+ET-ALNE). MTX+ET-ALNE was characterized on the basis of particle size (410 ± 25.4 nm), PDI (0.160), and zeta potential (+38.6 ± 5.6 mV) and evaluated for pH (6.15), drug content (97.7 ± 2.17%), entrapment efficiency (76 ± 4.6%), in vitro release, and in vitro cytotoxicity. About 82.6 ± 9.60% release of MTX+ET was observed in 24 h from the developed MTX+ET-ALNE which may help maintain therapeutic level of drugs in blood at least for one day. No toxicity was observed when Raw 264.7 cells were treated with MTX+ET-ALNE, and no causalities of mice were observed at experimental in vivo dose (10 mg/kg BW) of MTX+ET in MTX+ET-ALNE-treated group. MTX+ET-ALNE treatment has alleviated arthritic scores and inflammatory cytokines level in a very significant manner when compared with MTX+ET-LNE and MTX+ET solutions. MTX+ET-ALNE-treated group restored histological alterations (cartilage/bone erosion, inflammatory cell infiltration, synovial hyperplasia, and narrower joint space) as observed in diseased treated groups. In conclusion, MTX+ET-ALNE can be opted as efficacious and clinically pertinent option to the current medication systems of arthritis.
Keywords: albumin; etanercept; lipid emulsion; methotrexate; rheumatoid arthritis.