To address the issue of membrane fouling by ubiquitous humic substances, a hydrophilic pore-former-blended polyethersulfone UF membrane was successfully synthesized via the phase inversion method. For the first time, extremely high concentrations of polyvinylpyrrolidone (PVP), up to 20 wt%, were tested as the hydrophilic pore-former in order to determine the optimum concentration for humic acid fouling. Intrinsic membrane parameters such as permeability and selectivity were evaluated using a cross-flow UF filtration setup. Interestingly, as little as 1 wt% added PVP can significantly improve membrane permeability. That tiny amount of added PVP increased membrane flux to 1107 L/m2h·bar from zero flux, with over 90% rejection of humic acid. In addition, pure water permeation increased to over 2400 L/m2h·bar without sacrificing humic acid rejection (around 90%) when 10 wt% PVP was added; pure water permeation decreased to around 1000 L/m2h·bar as added PVP was increased to 20 wt%. The order of water flux increased with the amount of added PVP up to 20 wt% during humic acid fouling while maintaining membrane selectivity. However, the membrane with 10 wt% added PVP showed the best fouling resistance in terms of flux recovery ratio (98%), total flux loss, reversible fouling ratio, and irreversible fouling ratio. Therefore, the addition of 10 wt% PVP is recommended considering cleaning efficiency and the moderately high flux during humic acid fouling for field operation in wastewater reclamation and water treatment processes.
Keywords: Humic acid; Membrane; Polyethersulfone; Polyvinylpyrrolidone; Ultrafiltration.
Copyright © 2017 Elsevier Ltd. All rights reserved.