Our results suggest that the prevalence of bone health deficits in children with CP was overestimated, when using only age- and height-adjusted bone mineral content (BMC) and areal bone mineral density (aBMD). When applying the functional muscle-bone unit diagnostic algorithm (FMBU-A), the prevalence of positive results decreased significantly. We recommend applying the FMBU-A when assessing bone health in children with CP.
Introduction: The prevalence of bone health deficits in children with cerebral palsy (CP) might be overestimated because age- and height-adjusted reference percentiles for bone mineral content (BMC) and areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry (DXA) do not consider reduced muscle activity. The aim of this study was to compare the prevalence of positive DXA-based indicators for bone health deficits in children with CP to the prevalence of positive findings after applying a functional muscle-bone unit diagnostic algorithm (FMBU-A) considering reduced muscle activity.
Methods: The present study was a monocentric retrospective analysis of 297 whole body DXA scans of children with CP. The prevalence of positive results of age- and height-adjusted BMC and aBMD defined as BMC and aBMD below the P3 percentile and of the FMBU-A was calculated.
Results: In children with CP, the prevalence of positive results of age-adjusted BMC were 33.3% and of aBMD 50.8%. Height-adjusted results for BMC and aBMD were positive in 16.8 and 36.0% of cases. The prevalence of positive results applying the FMBU-A regarding BMC and aBMD were significantly (p < 0.001) lower than using age- and height-adjusted BMC and aBMD (8.8 and 14.8%).
Conclusions: Our results suggest that the prevalence of bone health deficits in children with CP was overestimated, when using age- and height-adjusted BMC and aBMD. When applying the FMBU-A, the prevalence decreased significantly. We recommend applying the FMBU-A when assessing bone health in children with CP.
Keywords: Cerebral palsy; Dual-energy X-ray absorptiometry; Fracture; Muscle-bone interactions; Osteoporosis.