The conserved cAMP-dependent protein kinase (PKA) plays critical roles in the regulation of morphological transitions and virulence in the human fungal pathogen Candida albicans. It has long been thought that the PKA catalytic subunit is essential for cell viability in this fungus. Paradoxically, the single adenylyl cyclase-encoding gene, CYR1, which is required for the production of cAMP in C. albicans, is not essential for cell growth. Here, a double mutant of TPK1 and TPK2 (tpk2/tpk2 tpk1/tpk1, t2t1), which encode two isoforms of the PKA catalytic subunit was successfully generated, suggesting that this subunit is not essential for cell viability. Inactivation of the PKA catalytic subunit blocked filamentation and dramatically attenuated white-to-opaque switching, but promoted sexual mating. Comparative transcriptomic analyses demonstrated that the t2t1 and cyr1/cyr1 mutants exhibited similar global gene expression profiles. Compared with the WT strain, the general transcriptional activity and metabolism were significantly decreased in both the t2t1 and cyr1/cyr1 mutants. Using combined phosphoproteomic and bioinformatic analyses, we identified 181 potential PKA phosphorylation targets, which represent 148 unique proteins involved in a wide spectrum of biological processes. The study sheds new insights into the global regulatory features of the cAMP/PKA pathway in C. albicans.
© 2017 John Wiley & Sons Ltd.