Due to the intriguing optical and electronic properties, 2D materials have attracted a lot of interest for the electronic and optoelectronic applications. Identifying new promising 2D materials will be rewarding toward the development of next generation 2D electronics. Here, palladium diselenide (PdSe2 ), a noble-transition metal dichalcogenide (TMDC), is introduced as a promising high mobility 2D material into the fast growing 2D community. Field-effect transistors (FETs) based on ultrathin PdSe2 show intrinsic ambipolar characteristic. The polarity of the FET can be tuned. After vacuum annealing, the authors find PdSe2 to exhibit electron-dominated transport with high mobility (µe (max) = 216 cm2 V-1 s-1 ) and on/off ratio up to 103 . Hole-dominated-transport PdSe2 can be obtained by molecular doping using F4 -TCNQ. This pioneer work on PdSe2 will spark interests in the less explored regime of noble-TMDCs.
Keywords: 2D materials; ambipolar; field-effect transistors; high mobility; palladium diselenide.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.