Obtaining a performing decellularized tendon scaffold with proper dimensions and adequate availability is highly desirable. However, the combined study of complete decellularization and detailed characterization of native tendon extracellular matrix (ECM) from large animals is still lacking. In the present study, we developed a new decellularization protocol, including physical methods and enzymatic solutions for processing bovine Achilles tendons, and produced a decellularized bovine tendon sheet (DBTS) scaffold for tendon reconstruction. The decellularization effectiveness was demonstrated by DNA quantification and histological qualification. The removal of the alpha-gal epitopes was confirmed by ELISA analysis and immunohistochemical staining. After decellularization, there were no significant alterations of the native tendon extracellular matrix (ECM) properties, including the internal ultrastructure, biochemical compositions such as collagen, glycosaminoglycans (GAGs), basic fibroblast growth factor (bFGF) and transforming growth factor-β1 (TGF-β1), fibronectin and decorin, as well as substantial mechanical strength. Furthermore, the DBTS scaffold showed no cytotoxic and promoted the proliferation of NIH-3T3 fibroblasts in vitro. When implanted into rat subcutaneous tissue, the DBTS scaffold displayed excellent histocompatibility in vivo. Our results, while offering a new decellularization protocol for large tendons, can provide a promising biologic scaffold with a combination of mechanical strength and tendon ECM bioactive factors that may have many potential applications in tendon reconstruction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2299-2311, 2017.
Keywords: biologic scaffold; bovine tendon; decellularization; extracellular matrix; tendon reconstruction.
© 2017 Wiley Periodicals, Inc.