Mitochondrially generated oxidants are believed to play important roles in both physiology and pathophysiology. Therefore, it is of significant interest to better understand the metabolic conditions leading to enhanced mitochondrial oxidant generation. Here, we investigate the influence of oxygen and glucose availability on the redox state of peroxiredoxin-based redox probes, expressed in the cytosol and mitochondrial matrix of yeast cells. We observe that the redox state of peroxiredoxin probes reflects the balance between dioxygen-dependent peroxide generation and glucose-dependent generation of reducing equivalents. The oxidative pentose phosphate pathway appears to be the dominant source of NADPH in the system under study.
Keywords: genetically encoded redox probes; hydrogen peroxide; mitochondria; pentose phosphate pathway.