A composite material consisting of nanoscale zerovalent iron particles supported on herb-residue biochar (nZVI/BC) was synthesized and used for treatment of Cr(VI)-contaminated water. The effects of initial pH, chromium concentration, contact time, and competition with coexisting anions and natural organic matter (NOM) were also investigated. nZVI/BC was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy analysis (SEM), and the Brunauer-Emmett-Teller surface area was measured. TEM and X-ray photoelectron spectroscopy (XPS) analysis before and after reaction with Cr(VI) showed that reduction and coprecipitation occurred during hexavalent chromium adsorption. The removal of Cr(VI) was highly pH-dependent and the adsorption kinetics data agreed well with the pseudo-second-order model. The presence of SO42- and humic acid promoted Cr(VI) removal at both low and high concentrations, while the HCO3- inhibited the reaction. These results prove that nZVI/BC can be an effective reagent for removal of Cr(VI) from solutions.
Keywords: Biochar; Co-precipitation; Herb residue; Hexavalent chromium; Nanoscale zerovalent iron.
Copyright © 2017 Elsevier Ltd. All rights reserved.