The Russian wheat aphid (Diuraphis noxia Kurdjumov) is an economically important pest of small grains in many countries. The past decades have seen the deployment of resistance-carrying wheat (Triticum aestivum L.) cultivars to control D. noxia. However, the emergence of resistance-breaking biotypes is negating this strategy. The role that noncoding RNA (ncRNA) molecules play in the wheat-D. noxia interaction has not been studied to date. This study aimed to isolate differentially regulated microRNA from a resistant and susceptible near-isogenic wheat line after aphid infestation. Twenty-seven identified miRNA were mostly related to stress-linked miRNA, and their predicted targets were linked with known D. noxia-feeding regulated proteins. These included transcription factors, signaling proteins, carbohydrate metabolism, and disease resistance pathways. Gene expression of three putative miRNAs and a predicted nucleotide-binding leucine-rich repeat gene with an identified miRNA target site in the NB-ARC domain displayed differential regulation between the resistant and susceptible plants. This study marks the initial investigation into understanding the role of ncRNA in a D. noxia-resistant wheat line after infestation and reports a correlation between a miRNA and its putative target for this interaction.
Keywords: Russian wheat aphid; immunity; miR159 family; microRNA; nucleotide-binding leucine-rich repeat.
© The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: [email protected].