The skin microbiome of the common thresher shark (Alopias vulpinus) has low taxonomic and gene function β-diversity

Environ Microbiol Rep. 2017 Aug;9(4):357-373. doi: 10.1111/1758-2229.12537. Epub 2017 Jun 27.

Abstract

The health of sharks, like all organisms, is linked to their microbiome. At the skin interface, sharks have dermal denticles that protrude above the mucus, which may affect the types of microbes that occur here. We characterized the microbiome from the skin of the common thresher shark (Alopias vulpinus) to investigate the structure and composition of the skin microbiome. On average 618 812 (80.9% ± S.D. 0.44%) reads per metagenomic library contained open reading frames; of those, between 7.6% and 12.8% matched known protein sequences. Genera distinguishing the A. vulpinus microbiome from the water column included, Pseudoalteromonas (12.8% ± 4.7 of sequences), Erythrobacter (5. 3% ± 0.5) and Idiomarina (4.2% ± 1.2) and distinguishing gene pathways included, cobalt, zinc and cadmium resistance (2.2% ± 0.1); iron acquisition (1.2% ± 0.1) and ton/tol transport (1.3% ± 0.08). Taxonomic community overlap (100 - dissimilarity index) was greater in the skin microbiome (77.6), relative to the water column microbiome (70.6) and a reference host-associated microbiome (algae: 71.5). We conclude the A. vulpinus skin microbiome is influenced by filtering processes, including biochemical and biophysical components of the shark skin and result in a structured microbiome.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacteria / classification*
  • Bacteria / genetics
  • Bacteria / isolation & purification*
  • Bacteria / metabolism
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Biodiversity
  • Metagenomics
  • Microbiota*
  • Open Reading Frames
  • Phylogeny
  • Sharks / microbiology*
  • Skin / microbiology*

Substances

  • Bacterial Proteins