Ovarian stimulation with exogenous FSH followed by FSH withdrawal or 'coasting' is an effective means of increasing the number of oocytes obtainable for the in vitro production of cattle embryos. However, the quality of the oocytes thus obtained varies considerably from one cow to the next. The aim of the present study was to gain a better understanding of the follicular conditions associated with low oocyte developmental competence. Granulosa cells from 94 Holstein cows in a commercial embryo production facility were collected following ovarian stimulation and coasting. Microarray analysis showed 120 genes expressed with a differential of at least 1.5 when comparing donors of mostly competent with donors of mostly incompetent oocytes. Using ingenuity pathway analysis, we revealed the main biological functions and potential upstream regulators that distinguish donors of mostly incompetent oocytes. These are involved in cell proliferation, apoptosis, lipid metabolism, retinol availability and insulin signalling. In summary, we demonstrated that differences in follicle maturity at collection could explain differences in oocyte competence associated with individual animals. We also revealed deficiencies in lipid metabolism and retinol signalling in granulosa cells from donors of mostly incompetent oocytes.