Objective: Calving ease (CE) is a complex reproductive trait of economic importance in dairy cattle. This study was aimed to investigate the genetic merits of CE for Holsteins in Korea.
Methods: A total of 297,614 field records of CE, from 2000 to 2015, from first parity Holstein heifers were recorded initially. After necessary data pruning such as age at first calving (18 to 42 mo), gestation length, and presence of sire information, final datasets for CE consisted of 147,526 and 132,080 records for service sire calving ease (SCE) and daughter calving ease (DCE) evaluations, respectively. The CE categories were ordered and scores ranged from CE1 to CE5 (CE1, easy; CE2, slight assistance; CE3, moderate assistance; CE4, difficult calving; CE5, extreme difficulty calving). A linear transformation of CE score was obtained on each category using Snell procedure, and a scaling factor was applied to attain the spread between 0 (CE5) and 100% (CE1). A sire-maternal grandsire model analysis was performed using ASREML 3.0 software package.
Results: The estimated direct heritability (h2) from SCE and DCE evaluations were 0.11±0.01 and 0.08±0.01, respectively. Maternal h2 estimates were 0.05±0.02 and 0.04±0.01 from SCE and DCE approaches, respectively. Estimates of genetic correlations between direct and maternal genetic components were -0.68±0.09 (SCE) and -0.71±0.09 (DCE). The average direct genetic effect increased over time, whereas average maternal effect was low and consistent. The estimated direct predicted transmitting ability (PTA) was desirable and increasing over time, but the maternal PTA was undesirable and decreasing.
Conclusion: The evidence on sufficient genetic variances in this study could reflect a possible selection improvement over time regarding ease of calving. It is expected that the estimated genetic parameters could be a valuable resource to formulate sire selection and breeding plans which would be directed towards the reduction of calving difficulty in Korean Holsteins.
Keywords: Calving Ease; Genetic Parameters; Holstein Cattle; Sire-maternal Grandsire Model; Snell Score.