Whole-Exome Sequencing of Metaplastic Breast Carcinoma Indicates Monoclonality with Associated Ductal Carcinoma Component

Clin Cancer Res. 2017 Aug 15;23(16):4875-4884. doi: 10.1158/1078-0432.CCR-17-0108. Epub 2017 Apr 19.

Abstract

Purpose: Although most human cancers display a single histology, there are unusual cases where two or more distinct tissue types present within a primary tumor. One such example is metaplastic breast carcinoma, a rare but aggressive cancer with a heterogeneous histology, including squamous, chondroid, and spindle cells. Metaplastic carcinomas often contain an admixed conventional ductal invasive or in situ mammary carcinoma component, and are typically triple-negative for estrogen receptor, progesterone receptor, and HER-2 amplification/overexpression. An unanswered question is the origin of metaplastic breast cancers. While they may arise independently from their ductal components, their close juxtaposition favors a model that postulates a shared origin, either as two derivatives from the same primary cancer or one histology as an outgrowth of the other. Understanding the mechanism of development of these tumors may inform clinical decisions.Experimental Design: We performed exome sequencing for paired metaplastic and adjacent conventional invasive ductal carcinomas in 8 patients and created a pipeline to identify somatic variants and predict their functional impact, without having normal tissue. We then determined the genetic relationships between the histologically distinct compartments.Results: In each case, the tumor components have nearly identical landscapes of somatic mutation, implying that the differing histologies do not derive from genetic clonal divergence.Conclusions: A shared origin for tumors with differing histologies suggests that epigenetic or noncoding changes may mediate the metaplastic phenotype and that alternative therapeutic approaches, including epigenetic therapies, may be required for metaplastic breast cancers. Clin Cancer Res; 23(16); 4875-84. ©2017 AACR.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Breast / metabolism*
  • Breast / pathology
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Carcinoma, Ductal, Breast / genetics*
  • Carcinoma, Ductal, Breast / metabolism
  • Carcinoma, Ductal, Breast / pathology
  • Clone Cells / metabolism
  • Clone Cells / pathology
  • DNA Copy Number Variations
  • Exome Sequencing / methods*
  • Female
  • Humans
  • Metaplasia / genetics
  • Metaplasia / metabolism
  • Middle Aged
  • Mutation
  • Triple Negative Breast Neoplasms / genetics
  • Triple Negative Breast Neoplasms / metabolism
  • Triple Negative Breast Neoplasms / pathology